68 research outputs found

    Writer recognition in cursive eye writing: a Bayesian model

    Get PDF
    International audienceUsing a novel apparatus coupling a visual illusion with an eye tracker device, trained participants are able to generate smooth pursuit eye movements, even without a target to follow. This allows them to perform arbitrary continuous shapes, and, for instance, write letters with their eyes. In a previous study, based on data from a single writer (author JL), we developed and tested a Bayesian computational model -- the BAP-EOL model -- able to simulate character recognition. In the present study, data from different writers provide the opportunity to study the signal characteristics of eye-written letters. More precisely, we extend the model to perform writer recognition. Experimental results, and high performance we obtained, show that eye writing is as writer specific as handwriting is, and that motor idiosyncrasies are present in eye-written letters

    On the Visual Input Driving Human Smooth-Pursuit Eye Movements

    Get PDF
    Current computational models of smooth-pursuit eye movements assume that the primary visual input is local retinal-image motion (often referred to as retinal slip). However, we show that humans can pursue object motion with considerable accuracy, even in the presence of conflicting local image motion. This finding indicates that the visual cortical area(s) controlling pursuit must be able to perform a spatio-temporal integration of local image motion into a signal related to object motion. We also provide evidence that the object-motion signal that drives pursuit is related to the signal that supports perception. We conclude that current models of pursuit should be modified to include a visual input that encodes perceived object motion and not merely retinal image motion. Finally, our findings suggest that the measurement of eye movements can be used to monitor visual perception, with particular value in applied settings as this non-intrusive approach would not require interrupting ongoing work or training

    The "silent" surround of V1 receptive fields: theory and experiments

    Get PDF
    International audienceThe spiking response of a primary visual cortical cell to a stimulus placed within its receptive field can be up- and down-regulated by the simultaneous presentation of objects or scenes placed in the "silent" regions which surround the receptive field. We here review recent progresses that have been made both at the experimental and theoretical levels in the description of these so-called "Center/Surround" modulations and in the understanding of their neural basis. Without denying the role of a modulatory feedback from higher cortical areas recent results support the view that some of these phenomena result from the dynamic interplay between feedforward projections and horizontal intracortical connectivity in V1. Uncovering the functional role of the contextual periphery of cortical receptive fields has become an area of active investigation. The detailed comparison of electrophysiological and psychophysical data reveals strong correlations between the integrative behavior of V1 cells and some aspects of "low-level" and "mid-level" conscious perception. These suggest that as early as the V1 stage the visual system is able to make use of contextual cues to recover local visual scene properties or correct their interpretation. Promising ideas have emerged on the importance of such a strategy for the coding of visual scenes and the processing of static and moving objects

    Motion integration across differing image features

    Get PDF
    AbstractTo interpret the projected image of a moving object, the visual system must integrate motion signals across different image regions. Traditionally, researchers have examined this process by focusing on the integration of equally ambiguous motion signals. However, when the motions of complex, multi-featured images are measured through spatially limited receptive fields, the resulting motion measurements have varying degrees of ambiguity. In a series of experiments, we examine how human observers interpret images containing motion signals of differing degrees of ambiguity. Subjects judged the perceived coherence of images consisting of an ambiguously translating grating and an unambiguously translating random dot pattern. Perceived coherence of the dotted grating depended upon the degree of concurrence between the velocities of the grating terminators and dots. Depth relationships also played a critical role in the motion integration process. When terminators were suppressed with occlusion cues, coherence increased. When dots and gratings were presented at different depth planes, coherence decreased. We use these results to outline the conditions under which the visual system uses unambiguous motion signals to interpret object motion

    A network view of the structure of center/surround modulations of V1 receptive field properties in visual and cortical spaces

    Get PDF
    Firing of V1 cells in response to test stimuli shown in the classical discharge field is highly dependent on the spatial context (orientation/contrast center-surround gradients) in which they are embedded. Here, we present a preliminary study of a large-scale detailed model constrained by physiological and psychophysical data which accounts for the modulatory effects induced by the concomitant stimulation of the “silent” surround. Numerical simulations were used to predict the changes produced at the firing level as a function of the neighborhood relationship imposed by the location of the cell in the orientation map

    Gravitational oscillations of a liquid column

    Get PDF
    We report gravity oscillations of a liquid column partially immersed in a bath of liquid. We stress in particular some peculiarities of this system, namely (i) the fact that the mass of this oscillator constantly changes with time; (ii) the singular character of the beginning of the rise, for which the mass of the oscillator is zero; (iii) the sources of dissipation in this system, which is found to be dominated at low viscosity by the entrance (or exit) effects, leading to a long-range damping of the oscillations. We conclude with some qualitative description of a second-order phenomenon, namely the eruption of a jet at the beginning of the rise.Comment: 22 pages, pdf. Submitted to Physics of Fluid

    Cursive Eye-Writing With Smooth-Pursuit Eye-Movement Is Possible in Subjects With Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder causing a progressive motor weakness of all voluntary muscles, whose progression challenges communication modalities such as handwriting or speech. The current study investigated whether ALS subjects can use Eye-On-Line (EOL), a novel eye-operated communication device allowing, after training, to voluntarily control smooth-pursuit eye-movements (SPEM) so as to eye-write in cursive. To that aim, ALS participants (n = 12) with preserved eye-movements but impaired handwriting were trained during six on-site visits. The primary outcome of the study was the recognition of eye-written digits (0–9) from ALS and healthy control subjects by naïve “readers.” Changes in oculomotor performance and the safety of EOL were also evaluated. At the end of the program, 69.4% of the eye-written digits from 11 ALS subjects were recognized by naïve readers, similar to the 67.3% found for eye-written digits from controls participants, with however, large inter-individual differences in both groups of “writers.” Training with EOL was associated with a transient fatigue leading one ALS subject to drop out the study at the fifth visit. Otherwise, itching eyes was the most common adverse event (3 subjects). This study shows that, despite the impact of ALS on the motor system, most ALS participants could improve their mastering of eye-movements, so as to produce recognizable eye-written digits, although the eye-traces sometimes needed smoothing to ease digit legibility from both ALS subjects and control participants. The capability to endogenously and voluntarily generate eye-traces using EOL brings a novel way to communicate for disabled individuals, allowing creative personal and emotional expression

    Dynamic competition between contour integration and contour segmentation probed with moving stimuli

    Get PDF
    AbstractLine-ends, corners and junctions are important singularities for form analysis, object recognition, depth ordering or motion processing. In this study, we investigate the extent to which processing the motion of line ends depends on the spatial configuration of their immediate surround. To that aim, we used two vertical collinear line segments, translating clockwise or anti-clockwise along a circular path, together with a direction discrimination task. Direction discrimination was measured independently for outer line-ends––at both segments extremities––and inner line-ends––in between collinear segments––using line segments partially occluded by invisible masks such that the direction of either inner or outer line-ends’ motion was restricted to a sinusoidal translation along a horizontal axis, and thus irrelevant for the motion task. Under these conditions, access to the direction of inner line-ends is longer and more difficult than it is for outer line-ends. Subsequent experiments show that these effects depend on the degree of collinearity between line segments. Similar experiments were performed after volunteers took a dose of Lorazepam, a benzodiazepine that facilitates the fixation of GABA on GABAa receptors. The results show that the differences between the processing of inner and outer line-ends is reduced, suggesting that the effect of the surround is modulated by inhibitory mechanisms. Using a simple model, we propose that this effect can be explained by a competition between a segmentation process based on surround suppression and contour integration through long-range horizontal connections, at or prior to motion processing stages

    Orientation dependent modulation of apparent speed: psychophysical evidence

    Get PDF
    AbstractWe report several experiments showing that a Gabor patch moving in apparent motion sequences appears much faster when its orientation is aligned with the motion path than when it is at an angle to it. This effect is very large and peaks at high speeds (64°/s), decreases for higher and lower speeds and disappears at low speeds (4°/s). This speed bias decreases as the angle between the motion axis and the orientation of the Gabor patch increases, but remains high for curvilinear paths, provided that element orientation is kept tangential to the motion trajectory. It is not accounted for by decision strategies relying on the overall length and duration of the motion sequence or the gap size (or spatial jump) between successive frames. We propose a simple explanation, thoroughly developed as a computational model in a companion paper (Seriès, Georges, Lorenceau & Frégnac: “Orientation dependent modulation of apparent speed: a model based on the dynamics of feedforward and horizontal connectivity in V1 cortex”, this issue), according to which long-range horizontal connections in V1 elicit differential latency modulations in response to apparent motion sequences, whose read-out at an MT stage results in a perceptual speed bias. The consequences of these findings are discussed

    Orientation dependent modulation of apparent speed: a model based on the dynamics of feed-forward and horizontal connectivity in V1 cortex

    Get PDF
    AbstractPsychophysical and physiological studies suggest that long-range horizontal connections in primary visual cortex participate in spatial integration and contour processing. Until recently, little attention has been paid to their intrinsic temporal properties. Recent physiological studies indicate, however, that the propagation of activity through long-range horizontal connections is slow, with time scales comparable to the perceptual scales involved in motion processing. Using a simple model of V1 connectivity, we explore some of the implications of this slow dynamics. The model predicts that V1 responses to a stimulus in the receptive field can be modulated by a previous stimulation, a few milliseconds to a few tens of milliseconds before, in the surround. We analyze this phenomenon and its possible consequences on speed perception, as a function of the spatio-temporal configuration of the visual inputs (relative orientation, spatial separation, temporal interval between the elements, sequence speed). We show that the dynamical interactions between feed-forward and horizontal signals in V1 can explain why the perceived speed of fast apparent motion sequences strongly depends on the orientation of their elements relative to the motion axis and can account for the range of speed for which this perceptual effect occurs (Georges, Seriès, Frégnac and Lorenceau, this issue)
    corecore